

A User Level Framework for Ad hoc Routing

 Jeremie Allard Paul Gonin
 Minoo Singh Golden G. Richard III

Dept. of Computer Science
University of New Orleans
New Orleans, LA 70148

Contacts: {jallard, paul, minoo, golden}@cs.uno.edu

Abstract

The availability of inexpensive wireless networking
hardware (e.g., based on the IEEE 802.11 standards) has
generated interest in a large class of wireless applica-
tions. Many applications benefit from rapidly deployable
networks—for example, collaborative applications to
support field research or emergency incident response.
The need for networks that can be rapidly deployed has
resulted in a substantial body of research in ad hoc rout-
ing protocols. Such protocols use intermediate nodes as
routers and support highly dynamic network configura-
tions.

We have developed a portable, user-level framework
for ad hoc routing in C++. In our current implementa-
tion of this framework a tailored SOCKS proxy handles
client requests and uses an implementation of an ad hoc
routing protocol to provide routing. So far, implementa-
tions of DSR and flooding are provided, but other routing
protocol implementations can easily be incorporated. An
integrated simulator allows new routing protocols to be
tested, and the code can be moved to a production ad hoc
deployment with no modification. Our framework is suit-
able for a number of purposes, from ad hoc routing pro-
tocol research, where new protocols can be rapidly de-
veloped and tested, to the deployment of real ad hoc net-
works. The system is easily installed on a wide variety of
operating systems and requires no kernel hacking.

1. Introduction

Research into ad hoc routing protocols, which have
their roots in packet radio networks, has gained momen-
tum recently as wireless networks move into the main-
stream. This is due primarily to the availability of inex-
pensive wireless networking hardware and a range of en-
visioned applications. Currently, most deployed wireless
networks are built using base stations. The disadvan-
tages of such “infrastructure” wireless networks are pri-
marily high cost and the inability to deploy such networks
“on the spot” (as in an emergency response scenario). Ad

hoc routing protocols use mobile nodes as routers, allow-
ing a network of arbitrary diameter to be deployed with-
out base stations (given sufficient node density).

The IEEE 802.11 standards, on which most currently
deployed high bitrate networks are based, specifies an “ad
hoc” mode, where mobile units within transmission range
of each other (typically within hundreds of feet, though
obstructions in the environment drastically reduce the
range) can communicate without infrastructure. No rout-
ing is supported, however, which severely restricts the
diameter of the network. Unfortunately, given current
operating systems support for ad hoc networks and the
state of current ad hoc routing implementations, configur-
ing nodes in order to deploy a routable ad hoc network is
a tedious process, often requiring modification to the op-
erating system kernel.

Because we feel that there is substantial interest in
routable ad hoc networks that can be easily deployed, we
have developed an ad hoc routing architecture that resides
entirely at user level. Although we currently supply im-
plementations of Dynamic Source Routing [1] and flood-
ing, any ad hoc routing protocol can be easily incorpo-
rated. Our architecture has been developed in C++ and is
designed to be portable to a number of operating systems,
including Windows, Mac OS X, and various flavors of
Unix.

We envision a number of scenarios where the architec-
ture will prove useful:
• For researchers working on new ad hoc routing pro-

tocols, or enhancements to existing protocols, our
system allows rapid implementation and testing.

• The integrated simulator makes experimentation with
ad hoc routing protocols in a classroom or laboratory
setting straightforward.

• The architecture can be used for rapid deployment of
ad hoc networks today, for field research, tourist ap-
plications, emergency incident response, etc.

2. Previous Work

Flooding, Dynamic Source Routing (DSR) [1], and
Ad-Hoc On Demand Distance Vector Routing (AODV)
[2] are just a few of the many proposed ad-hoc routing
protocols. Though flooding is an attractive option because
of its simplicity, it carries a high overhead, particularly
for larger ad hoc networks. DSR uses source routing, in
which the sender determines the sequence of hops to the
destination (the route) and includes this information ex-
plicitly in the header of each data packet. AODV, on the
other hand, takes a distance vector approach, maintaining
routing tables at each node with next-hop information. It
determines routes on-demand and maintains only recently
used routes. A combination of sequence numbers and
packet information is used to forward packets and to
avoid routing loops.

 There are several user-level and kernel-level imple-
mentations of these protocols (and others). These include
the mad-hoc AODV implementation for Linux [3], the
CMU Monarch implementation of DSR for FreeBSD 3.3
and 3.4 [4], and the INRIA implementation of Optimized
Link State Routing (OLSR) [5]. Our goal, rather than
implementing a particular ad hoc routing protocol for a
particular operating system, has been to develop a frame-
work that allows quick implementation of any ad hoc
routing protocol. Our framework is portable across a va-
riety of operating systems and frees the developer from
dealing with a ground-up effort for each protocol.

Routing protocols must be thoroughly tested before
deployment. Therefore, simulation is often undertaken
before a concrete implementation. Extensive work has
been done to develop several simulation environments for
wireless (and wired) networks. GloMoSim [6] and ns2
[7] are two such simulation environments. The simulator
provided in our framework is not yet as mature as ns2 or
GloMoSim, but in contrast to these simulation environ-
ments, an implementation of an ad hoc routing protocol
can be deployed after simulation w/o modification.

3. Problems

Currently, implementing an ad hoc routing protocol
involves extensive work on low-level issues, often requir-
ing modification to an operating system’s network stack.
Unfortunately, this tedious work must be repeated to port
the routing protocol to a different system (and not only
between, e.g., Linux and Microsoft Windows, but be-
tween different versions of Windows as well). Conse-
quently, implementers of ad-hoc routing protocols cannot
concentrate their effort on actual protocol issues until they
have solved these low-level issues.

Another waste of effort is caused by the separation be-
tween simulators, testbed and deployment platforms. It is
quite frustrating, for example, to implement a routing

protocol in ns2 or GloMoSim, only to have to start from
scratch to deploy it in an actual ad hoc network.

But protocol implementation is not the only area in
which we currently identify problems. Present ad hoc
implementations can be quite frustrating for those who are
interested in developing or using applications for ad hoc
networks. Installation and configuration is often ex-
tremely difficult and requires extensive system admini-
stration skill (such as patching and recompiling the kernel
source or installing device drivers).

4. Design Details

4.1. Goals

Our system attempts to provide a flexible, simple to
use solution for developing and deploying ad-hoc routing
protocols. We wanted to provide the following:
• Support for conventional applications: we should be

able to support standard Internet applications (web
browsers, mail, ftp, ssh—any TCP or UDP based ap-
plication) without modification.

• Abstraction of the environment: details of the operat-
ing system and the networking hardware are hidden
from the protocol implementation. This enables the
implementer of a routing protocol to concentrate on
protocol details.

• Fast development: adding a routing protocol should
be as easy as possible. This implies the availability of
facilities for debugging and simulation, and the inter-
faces the routing protocol must use should be simple
and well designed.

• Easy deployment: installing the platform should be
possible on as many systems as possible (it should be
portable), and should be easy (any user should be
able to do it).

• Connectivity to the Internet: it should be possible to
access the Internet from the ad-hoc nodes, without
modification on the Internet side (we cannot add our
system in all Internet’s servers).

• Configuration: As little configuration as possible
should be necessary (primarily, network environment
settings such as DNS and broadcast addresses).

As we describe in the rest of this section, our system

uses a user-level proxy to execute the routing protocols,
which fulfills the previous conditions. The design of the
system is detailed in the following sections.

4.2. Design

The architecture is designed in a layered manner, using
the components illustrated in Figure 1.

APPLICATION ADHOC NETWORK

ROUTING ENVIRONMENT

RELIABLE MESSAGE DELIVERY

ROUTING PROTOCOL

Figure 1. Ad hoc routing architecture.

A message traverses the layers in the following order:

application routing environment reliable message delivery

 routing protocol reliable message delivery routing en-
vironment adhoc network

4.2.1. Application

The current implementation supports all TCP and UDP
applications including web browsers, ssh, telnet, ftp etc.

4.2.2. Ad hoc network

The ad hoc network consists of a group of nodes that
can transmit messages to each other. Messages can either
unicast or broadcast. A broadcast operation involves the
emission of a message from a node to all its neighbors.

Since there is no routing support at this layer, nodes
may communicate only with their immediate neighbors
(i.e., nodes that are accessible without routing). Commu-
nication is unreliable—there is no retransmission facility.
For simplicity, we only consider bi-directional links.

4.2.3. Routing environment

The routing environment is the layer in charge of ab-
stracting system-dependent issues from the ad hoc routing
protocol. A protocol is always initialized with a reference
to the routing environment. It provides 4 important meth-
ods to the protocol, namely,
• isLocalClient is used by the protocol to estab-

lish if a destination is accessible from that node (the
destination is the node itself or it is accessible
through a different interface).

• sendClientMessage is used by the protocol to
send a message to a client. This client should be ac-
cessible to the node (that is, isLocalClient re-
turns true).

• sendRoutingMessage is used by the protocol to
send a routing message to another node (routing envi-
ronment).

• broadcastRoutingMessage is used by the
protocol to send a routing message to all the other
neighbor nodes.

The routing environment is associated with an ad hoc
routing protocol and transmits incoming messages by
using the methods of the routing protocol interface dis-
cussed in the next section.

Various implementations for a routing environment are
imaginable. It would typically be a driver and run at ker-
nel level, but we chose a more flexible and portable ap-
proach in our implementation in the form of a SOCKS5
proxy [8].

The rationale behind this choice is our desire to pro-
vide an environment that is easy to install and to use. A
SOCKS5 proxy approach has many advantages. It runs in
user space, and therefore it is easy for a simple user to
start, stop or restart it without 'polluting' the kernel space.
It is supported by many TCP and UDP applications, either
directly or with the use of a SOCKS wrapper [9] and
therefore does not require applications to be rewritten for
the ad hoc environment. Also, this solution is portable
between different operating systems.

As we wanted to provide the nodes on the ad hoc net-
work with connectivity to the Internet through one or
more Internet gateway nodes, we had to figure out a way
to address DNS name resolution. As a result, our
SOCKS5 routing environment acts as a fake DNS server
and our nodes are set to use their local address as a DNS
server. The proxy is configured with the location of a
remote DNS server. DNS requests are forwarded via the
routing protocol layer to the remote DNS server. Figure 2
illustrates the sequence of actions that take place when a
client asks for DNS name resolution.

4.2.4. Routing protocol

The routing protocol layer is the implementation of the
ad hoc routing protocol itself. Using the ad hoc network,
it must be able to transmit messages from one node to
another, even if the destination is not within the transmis-
sion range of the source node. A routing protocol has to
implement the RoutingProtocol interface, which
specifies the following methods:
• incomingClientMessage is used by the envi-

ronment to notify the routing protocol that a message
from a client application needs to be routed to its des-
tination.

• incomingRoutingMessage is used by the envi-
ronment to notify the routing protocol that a message
from another routing node has been received and
needs to be processed.

AD HOC
NETWORK

TCP Client
(e.g. IE)

Reliable
Transmission

Layer

Routing Protocol

1. DNS Query
14. DNS Reply

2. Incoming Client
Message

Routing Protocol

5. Incoming Routing Message

3. Send Routing Message
(assuming route in cache)

6. Send Client Message

Reliable
Transmission

Layer

TCP Server
(e.g. HTTPD)

7. DNS Query 8. DNS Reply

9. Incoming Client Message

10. Send Routing
Message

12. Incoming
Routing Message

13. Send
Client Message

Proxy
(Socks 5)

Client Handler Connect Handler DNS Forwarder

Proxy
(Socks 5)

Client Handler Connect Handler DNS Forwarder

Figure 2: DNS forwarding

11. Routing Message
(encapsulates DNS Reply)

4. Routing Message
(encapsulates DNS Query)

DNS Server

4.2.5. Reliable message delivery

The reliable message delivery layer was added to en-
sure reliable connection-oriented communications on top
of the routing protocol implementation. This layer is nec-
essary because we do not use the standard TCP/IP stack to
route messages and because the routing protocol imple-
mentation is allowed to be unreliable (in fact, most popu-
lar ad hoc routing protocols do not address reliable deliv-
ery). An alternative would have been to force the routing
protocols to implement methods that ensured reliable
delivery of packets. But this would contradict one of the
major goals of our design—allowing implementations of
routing protocols to be developed quickly without modifi-
cation to the specifications of the routing protocol. We
currently use a custom, reliable message delivery protocol
that, from the point of view of applications, appears to
provide a standard TCP connection.

This layer defines two additional interfaces, namely:
• ReliableRoutingProtocol extends Rout-
ingProtocol and provides a new method called
incomingReliableMessage. This method is
used by the routing environment to notify that a client
request needs to be reliably transmitted.

• ReliableRoutingEnvironment extends
RoutingEnvironment and provides a new

method called sendReliableMessage. This
method is used by the (reliable) routing protocol to
reliably route a message toward the destination
(therefore, it establishes a TCP connection with the
destination).

The reliable message delivery is based on the use of
connection identifiers. When a client application wants to
establish a TCP connection to a remote host, its request is
assigned a connection ID. All messages for the same con-
nection (i.e. having the same connection ID) and for the
same destination IP are guaranteed to be delivered in or-
der, except when the incomingReliableMessage
method returns an error (return value is not zero). In this
case, the message could not be reliably transmitted, the
connection is considered broken and should not be used
anymore.

4.2.6 Implementation of the routing protocol layer

The protocols currently included are flooding and
DSR. Other ad hoc routing protocols such as AODV,
OLSR, TORA etc. may be easily integrated. In flooding,
the message is broadcast to all nodes in the ad hoc net-
work. The nodes, upon reception of the message, take
appropriate actions, if any. However, the overhead asso-
ciated with flooding can be quite high because all nodes
receive and process the message, regardless of whether

they are the targets. DSR attempts to decrease this over-
head by establishing a route (sequence of hops) to the
destination and using this route to send messages to the
destination. The implementation of DSR is based on [1].

Figure 3 details the route establishment process for
DSR. When a client makes a TCP request, the routing
environment forwards this request using incomingRe-
liableMessage to the reliable routing environment
layer. The reliable routing environment then sends this
message to the routing protocol layer using incoming-
ClientMessage. The node’s cache is searched to find

a route to the destination. If a route is not found, a route
request is broadcast using the broadcastRouting-
Message method. Upon reception of the route request,
the node may either forward it (after adding itself to the
route) or return a route reply (if it is the destination of the
request or it has a cached route to the destination). The
route reply is sent using the sendRoutingMessage
method of the routing environment. When the initiator
node receives the route reply, it caches the route and uses
it to forward data to the destination. Figure 4 illustrates
how data is transferred between the nodes.

6. Broadcast

TCP Client
(e.g. IE)

Reliable Transmission Layer

Routing Protocol
(DSR)

2. Incoming Reliable
Message

Routing Protocol
(DSR)

5. Broadcast Routing
Message

3. Incoming Client
Message

9. Incoming Routing Message
(Route Reply)

10. Send Routing Message

12. Incoming
Routing Message

(Route Reply)

Proxy
(Socks 5)

Client Handler Connect Handler DNS Forwarder

Proxy
(Socks 5)

Client Handler Connect Handler DNS Forwarder

1. TCP Request
(e.g. www.google.com)

4. Broadcast Routing
Message

(Route Request)

Reliable Transmission Layer

7. Incoming Routing Message
(Route Request)

8. Incoming Routing Message
(Route Request)

11. Routing Message
(Route Reply)

13. Incoming
Routing Message

(Route Reply)

Figure 3: Route establishment

TCP Server
(e.g. HTTPD)

AD HOC
NETWORK

4.3. Testing and Deployment

We have implemented a simulator in order to assist in
the development of routing protocols on our platform.
This simulator implements the RoutingEnviron-
ment interface and thus can be used with protocols that
use that interface.

The simulator provides a graphical representation of
the simulated network in order to allow an intuitive and
quick understanding of the behavior of the protocol. Logs
are also available to carefully verify that the implementa-
tion of the protocol works correctly.

When the simulator is started, nodes are randomly po-
sitioned on a rectangular canvas (the network). We cur-
rently support the random direction mobility model. In
this model, nodes are assigned an initial direction and
speed. When a node hits the network’s boundary, it
chooses another random direction. The network configu-
ration can be modified by changing the number of nodes,
the transmission range, latency and the number of nodes
initiating messages. Each of these is a parameter in the
initial configuration of the simulator. Other mobility
models can be easily incorporated. A snapshot of the
simulator in action is presented in Figure 5.

TCP Client
(e.g. IE)

Reliable Transmission Layer

Routing Protocol
(DSR)

Routing Protocol
(DSR)

19. Send Client Message

20. Send Reliable Message
15.Send Routing Message

(Data)

Proxy
(Socks 5)

Client Handler Connect Handler DNS Forwarder

Reliable Transmission Layer

17. Incoming Routing Message
(Data)

18. Incoming Routing Message
(Data)

14. Send Routing Message
(Data w/ Source Route)

Figure 4: Data transfer

Proxy
(Socks 5)

Client Handler DNS ForwarderConnect Handler

16. Message Forwarded by
nodes in Route

21. TCP Request
(e.g. www.google.com)

TCP Server
(e.g. HTTPD)

AD HOC
NETWORK

 Figure 5: Simulator

Once tested with the simulator, the implementation of

the ad hoc routing protocol can be deployed on a wireless
network without any modification to its source code. The
only requirement is to link the implementation with a
routing environment such as our SOCKS proxy. The sys-
tem was tested using a group of IBM Thinkpad 390X
laptops equipped with Orinoco 802.11b wireless cards.
The laptops were running different versions of Windows
(mainly Me and 2000). The release version of the plat-
form consisted of a single binary executable and a library
(DLL) and was distributed to each of the laptops. Each
node was set in ad hoc mode with one of them serving as
an Internet gateway.

5. Conclusion and Future Work

In this paper, we have described a portable user-level
architecture for ad hoc routing. The framework was de-
veloped with the following goals in mind: (1) Support all
conventional applications; (2) Easy deployment (3)
Minimal configuration, (4) Abstraction of the routing
environment, and (5) Straightforward Internet connec-
tivity. We proposed a layered framework consisting of a
routing environment, routing protocol layer and a reliable
message delivery layer. The routing environment ab-
stracts lower-level details of the network and the operat-
ing system from the routing protocol layer. This allows
the routing protocol to be developed independently and
integrated easily.

Our current implementation of the routing environment
uses a SOCKS5 interface for maximum portability. The
framework currently includes implementations of the Dy-
namic Source Routing (DSR) and flooding, though other
protocols could be easily incorporated. A simulator is
provided, which allows testing the routing protocol im-
plementation before deployment. A nice feature of our
implementation is that the routing protocols require no
modification when moved from the simulation environ-
ment to actual deployment.

We imagine that this architecture will be useful for
several purposes: for research in designing new ad hoc
routing protocols, for educational purposes, allowing stu-
dents to gain familiarity with ad hoc networking proto-
cols, and for deployment of real ad hoc networks to sup-
port emerging applications.

The architecture is still being developed. The next ma-
jor undertaking is a performance study—while it is clear
that the architecture works (we have spent many happy
hours surfing in infrastructure-less networks), we cur-
rently have no clear picture of how efficiently network
resources are used. Other ongoing work includes adding
support for multicast routing protocols and IPv6 support.

References
[1] D. Johnson, D. Maltz, Y-C Hu, J. Jetcheva, “The Dynamic
Source Routing Protocol for Mobile Ad Hoc Networks (DSR),”
http://search.ietf.org/internet-drafts/draft-ietf-manet-dsr-07.txt.
[2] C. Perkins, A. Royer, S. Das, “Ad hoc On-Demand Distance
Vector (AODV) Routing,” http://search.ietf.org/internet-
drafts/draft-ietf-manet-aodv-10.txt.
[3] F. Lilieblad, O. Mattsson, P. Nylund, D. Ouchterlony, A.
Roxenhag, madhoc Implementation of AODV for Linux”.
[4] Monarch Implementation of DSR, available at
http://www.monarch.cs.rice.edu/.
[5] INRIA Implementation of Optimized Link State Routing,
available at http://menetou.inria.fr/olsr/.
[6] X. Zeng, R. Bagrodia, M. Gerla, "GloMoSim: a Library for
Parallel Simulation of Large-scale Wireless Networks," Pro-
ceedings of the 12th Workshop on Parallel and Distributed
Simulations, 1998.
[7] ns2 website at http://www.isi.edu/nsnam/ns/.
[8] M. Leech et al, “SOCKS Protocol Version 5”,
http://www.faqs.org/rfcs/rfc1928.html.
[9] SocksCap, http://www.socks.nec.com/reference-
/sockscap.html.
[10] R. Caceres, L. Iftode, "Improving the Performance of
Reliable Transport Protocols in Mobile Computing Environ-
ments," chapter 7, pp. 207-228, Mobile Computing, T. Imelinski
and H. Korth, eds. Kluwer Academic.

