
The GrImage Platform: A Mixed Reality Environment for Interactions

Jérémie Allard Jean-Sébastien Franco Clément Ménier Edmond Boyer

Bruno Raffin

Laboratoire Gravir, Laboratoire ID

CNRS/INPG/INRIA/UJF

INRIA Rhône-Alpes

655 avenue de l’Europe, 38334 Saint Ismier, France

E-mail: firstname.lastname@inrialpes.fr

Abstract

In this paper, we present a scalable architecture to com-

pute, visualize and interact with 3D dynamic models of real

scenes. This architecture is designed for mixed reality ap-

plications requiring such dynamic models, tele-immersion

for instance. Our system consists in 3 main parts: the ac-

quisition, based on standard firewire cameras; the compu-

tation, based on a distribution scheme over a cluster of PC

and using a recent shape-from-silhouette algorithm which

leads to optimally precise 3D models; the visualization,

which is achieved on a multiple display wall. The pro-

posed distribution scheme ensures scalability of the system

and hereby allows control over the number of cameras used

for acquisition, the frame-rate, or the number of projectors

used for high resolution visualization. To our knowledge

this is the first completely scalable vision architecture for

real time 3D modeling, from acquisition to visualization

through computation. Experimental results show that this

framework is very promising for real time 3D interactions.

1 Introduction

Interactive and mixed reality environments generally

rely on the ability to retrieve 3D information about users,

in real time, in an interaction space. Such information is

used to make real and virtual worlds consistent with one an-

other. Traditional solutions to this problem usually consist

in tracking positions of sensors by means of various tech-

nologies including electromagnetic waves, infrared sensors

or accelerometers. However, this requires users to wear in-

vasive equipment and usually specific body suits. Further-

more it does not lead to a shape description, as required

for many applications such as tele-immersion for example.

In this paper, we consider a more flexible class of methods

based on digital cameras. These methods can compute 3D

shape models in real-time, and without any markers or any

specific equipment. We propose a framework in this con-

text, from acquisition to visualization and interactions. Our

objective is to provide a flexible solution which especially

focuses on issues that are critical in such systems: precision

of the 3D model, precision of the visualization and process

speed.

Several multi-camera systems for dynamic modeling

have been proposed. Stereo based systems were first pro-

posed [16] for virtualization, but most recent systems use

image silhouettes as input data to compute 3D shapes. They

can be classified according to the fact that they work offline

or in real-time, and also by the type of 3D models which

they build. Offline systems allow complex and precise mod-

els to be built [6, 5], in particular articulated models, how-

ever they do not allow real-time interaction as intended in

this work. Most real-time systems, such as [7, 10], that have

been proposed in the past, compute voxel models, i.e. dis-

crete 3D models made of elementary parallelepipedic cells.

Interestingly, several systems in this category [4, 12, 3, 18]

use a distribution scheme over a PC cluster to speed up

computations and hence, provide some kind of control over

the model precision and the process speed. However, voxel

based methods are still imprecise unless a huge number of

voxels is used. Furthermore they require post-processing,

typically a marching cubes approach, to produce surface

shapes. This is computationally expensive, and generates

very small-scale geometry whenever precision is required.

Another class of real time, but non-parallel, approaches

directly render new viewpoint images [17] using possibly



graphic cards for computations[14]. Based on the Image

Based Visual Hull method [15], these approaches efficiently

focus on the desired 2D image, but they still rely on a sin-

gle PC for computations, limiting the number of video-

streams or the frame-rate, and they do not provide explicit

3D shapes as required by many applications.

In contrast to the aforementioned systems, ours directly

computes watertight and manifold surface models. These

surface models are exact with respect to the input silhouette

information available and, as such, are optimal and equiv-

alent to voxel grids with infinite resolutions. A particular

emphasis has been put on the system scalability to ensure

flexibility and to address performance and hardware cost ef-

ficiency issues. To this aim, the system is composed of mul-

tiple commodity components: FireWire cameras distributed

on multiple PCs interconnected through a standard Ethernet

network, as well as multiple projectors for a wall display.

To reach real time performance, a careful distribution of the

work load on the different resources is achieved. For that

purpose we rely on a middleware library called FlowVR [1],

dedicated to the distribution of interactive applications.

Section 2 outlines the global approach. Section 3 dis-

cusses issues related to image acquisition. The 3D modeling

algorithm and its parallel implementation is then explained

in section 4. In section 5, interactions and visualization are

described. Section 6 details the distributed framework for

our system. Section 7 presents some experimental results

before concluding in section 8.

2 Outline

Our goal is to compute 3D shapes of users in an

acquisition space surrounded by several cameras in real

time (see figure 1). Such models are subsequently used for

interaction purposes, including display. In order to achieve

this, several processes must be coupled.

Acquisition Fixed cameras are set to surround the scene.

Their calibration is obtained offline through off-the-shelf li-

braries such as OpenCV. Each camera is handled by a dedi-

cated PC. Each acquired image is locally analyzed to extract

regions of interest (the foreground) which are then vector-

ized, i.e. their delimiting polygonal contours are computed.

3D modeling A geometric model is then computed from

the silhouettes using an efficient method to compute the vi-

sual hull [13]. Obtained visual hull polyhedrons are suf-

ficient for numerous VR applications including collision

detection or virtual shadow computation for instance. To

reach a real time execution, their computation is distributed

among different processors.

Interactions and Visualization The 3D mesh is asyn-

chronously sent to the interaction engines and to the visu-

alization PCs. Multi-projector rendering is handled by a

Figure 1. From multi-camera videos to dy-

namic textured 3D models

mixed replicated/sort-first approach.

3 Acquisition

Acquisition takes place on a dedicated set of PCs, each

connected to a single camera. These PCs perform all nec-

essary preliminary image processing steps: color image ac-

quisition, background subtraction and silhouette polygonal-

ization (see figure 2). All cameras are standard firewire

cameras, capturing images at 30 fps with a resolution of

780x580 in YUV color space.

2



Figure 2. The different steps in the acquisi-

tion process: (a) the original image; (b) the

binary image of the silhouette; (c) the exact

silhouette polygon (250 vertices); (d) a sim-

plified silhouette polygon (55 vertices).

3.1 Synchronization

Dealing with multiple input devices raises the problem of

data synchronization. Indeed, our applications rely on the

assumption that the input data chunks received from differ-

ent sources are coherent, i.e. that they relate to the same

scene event. We use an hardware synchronization where

image acquisition is triggered by externally gen-locking the

cameras, ensuring a delay between images below 100µs.

3.2 Background Subtraction

Regions of interest in the images, i.e. the foreground

or silhouette, are extracted using a background subtraction

process. As most of the existing techniques [11, 7], we rely

on a per pixel color model of the background. For our pur-

pose, we use a combination of a Gaussian model for the

chromatic information (UV) and an interval model for the

intensity information (Y) with a variant of the method by

Horprasert et al. [11] for shadow detection. A crucial re-

mark here is that the quality of the produced 3D model

highly depends on this process since the modeling approach

is exact with respect to the silhouettes. Notice that a high

quality background subtraction can easily be achieved by

using a dedicated environment (blue screen). However, for

prospective purposes, we do not limit ourself to such spe-

cific environments in our setup.

3.3 Silhouette Polygonalization

Since our modeling algorithm computes a surface and

not a volume, it does not use image regions as defined by

silhouettes, but their delimiting polygonal contours. We ex-

tract such silhouette contours and vectorize them using the

method of Debled et al. [8]. Each contour is decomposed

into an oriented polygon, which approximates the contour

to a given approximation bound. With a single-pixel bound,

obtained polygons are strictly equivalent to the silhouettes

in the discrete sense (see figure 2-c). However in case of

noisy silhouettes this leads to numerous small segments. A

higher approximation bound results in significantly fewer

segments (see figure 2-d). This enables to control the model

complexity, and therefore the computation time, in an effi-

cient way.

4 3D Modeling

The visual hull is a well studied geometric shape [13]

which is obtained from a scene object’s silhouettes observed

in n views. It is the maximum shape consistent with all

silhouettes. As such, it can be seen as the intersection of the

images’ viewing cones, the volumes that backproject from

each view’s silhouette (see figure 3).

Figure 3. Visual hull of a sphere with 3 views.

We use a distributed surface-based method we have de-

veloped [9]. It recovers the exact polyhedral visual hull

from the input silhouette polygons in three steps. First, a

subset of the polyhedron edges – the viewing edges – is

computed. Second, starting from this partial description

of the polyhedron’s mesh, all other edges and vertices are

recovered by a recursive series of geometric deductions.

Third, the shape’s faces are recovered by traversing the ob-

tained mesh. The following paragraphs briefly detail these

steps, and their distribution over p CPUs.

4.1 Computing the Viewing Edges

Viewing edges are intervals along viewing lines associ-

ated from silhouette contours’ vertices. They are obtained

by computing the set of intervals along such a viewing line

that project inside all silhouettes. The distribution of this

computation uses the fact that each viewing line’s contri-

butions can be computed independently. Viewing lines are

partitioned into p identical cardinality sets and each batch is

3



distributed to a different CPU. The final set is obtained by

gathering partial results.

4.2 Computing the Visual Hull Mesh

The viewing edges give us an initial subset of the visual

hull geometry. The missing chains of edges, are then recov-

ered recursively starting from the viewing edges set. To al-

low concurrent task execution, the 3D space is partitionned

into p slices. Slice width is adjusted by attributing a con-

stant number of viewing edge vertices per slice for workload

balancing. Each CPU computes the missing edges in its as-

signed slice. Partial meshes are then gathered and carefully

merged across slice borders.

4.3 Computing the Faces

Faces of the polyhedron surface are extracted by walk-

ing through the complete oriented mesh while always tak-

ing left turns at each vertex, so as to identify each face’s

contours. Each CPU independently computes a subset of

the face information, the complete mesh being previously

broadcasted to each CPU.

5 Interactions and Visualization

5.1 Real-Time interactions

We experimented two different interactions. The first

one consists in a simple object carving (see figure 4(a)). The

user can sculpt an object using any part of his body. This

is done with octree-based boolean operations to update the

object where it intersects with the user’s model. Update op-

erations include removal, addition of matter and change in

sculpture color. The object can be rotated to simulate a pot-

ter’s wheel.

The second interaction results from the integration of the

user’s model inside a rigid body simulation (see figure 4(b)).

Several dynamic objects where added in the scene, and the

system handles collisions with the user’s body. This inter-

action requires all available information about the user’s

3D surface, which is not available using classical track-

ing methods. Using our surface modeling approach, such

fine level collision detection is something our system can

achieve.

5.2 Multi-projector Visualization

To provide the user with a wide field of view while pre-

serving image details, as necessary in semi-immersive and

immersive applications, we have chosen to use a multi-

projector display. The most scalable approach to implement

(a) Carving

(b) Collision

Figure 4. Interaction experiments.

this setup is to use one PC to drive each projector. To ob-

tain a coherent image, each PC will have to synchronously

render the same scene with a different view point, corre-

sponding to the position of the related projector.

Several methods are available to implement parallel vi-

sualization, depending on the level of the primitives ex-

changed. We use a new framework [2], allowing to use a

different scheme for each part of the scene. Large static ob-

jects, such as the landscape, use a replicated scheme so that

they are sent locally on each PC. Other objects, such as the

reconstructed mesh, are created on specific PCs and then

sent to all visualization PCs, possibly culling invisible data

(sort-first scheme).

The rendering of the 3D mesh itself is quite simple as

it is already a polygonal surface. We can optionally com-

pute averaged normal vectors at each vertex to produce a

smoothly shaded rendering. It is relatively small (approxi-

mately 10000 triangles) so it can be broadcasted to all visu-

alization PCs.

6 Implementation

6.1 The middleware library

To provide the I/O and computing power necessary to

run our applications in real time, we use a PC cluster. How-

ever, coupling all pieces of code involved, distributing them

4



on the PCs and insuring data transfers can be cumbersome.

To get a high performance and modular application, we use

a tool we developed [1], FlowVR, to manage distributed in-

teractive applications. It relies on an data-flow model. Com-

putation and I/O tasks are encapsulated into modules. Each

module endlessly iterates, consuming and producing data.

Modules are not aware of the existence of other modules. A

module only exchanges data with the FlowVR daemon that

runs on the same host. The set of daemons running on a

PC cluster are in charge of implementing the data exchange

network that connects modules. Daemons use TCP connec-

tions for network communications or shared-memory for

local communications. The FlowVR network defined be-

tween modules can implement simple module-to-module

connections as well as complex message handling opera-

tions like synchronizations, data filtering operations, data

sampling, broadcasts, etc. This fine control over data han-

dling enables to take advantage of both the specificity of the

application and the underlying cluster architecture to opti-

mize the latency and refresh rates.

6.2 Data-flow Graph

We propose for our application the following distributed

data-flow graph from acquisition to rendering (see fig-

ure 5).

Figure 5. Data-flow graph from 4 cameras ac-

quisitions to 4 video projectors rendering.

Each dedicated acquisition PC locally performs the data

acquisition to obtain the silhouettes which are then broad-

casted to the PCs in charge of the first modeling step, the

viewing edge computation step. Follows the two other mod-

eling steps, the global mesh recovery and the surface ex-

traction. The resulting reconstructed surface is broadcasted

to the PCs in charge of interaction computation and to the

visualization hosts. These PCs also receive data from the

interaction modules of the VR environment.

To obtain good performance and scalability it is nec-

essary to setup specific coupling policies between the dif-

ferent parts of the application so they can run at different

frequencies. The acquisition part typically runs at the fre-

quency of the cameras while interactions run at more than

100Hz. The visualization stage runs independently, allow-

ing to change the viewpoint without waiting for the compu-

tation of the next 3D model. To implement these coupling

policies we use two dataflow control policies: FIFO con-

nections between modules running at the same frequency

and greedy sampling connections (receivers always use last

available data) between modules running asynchronously.

7 Results

We present the results obtained with our platform. It

gathers 11 dual-Xeon 2.6 GHz PCs and 16 dual-Opteron

PCs connected together by a gigabit Ethernet network. 6

FireWire Cameras are connected to the dual-Xeon ma-

chines. 16 projectors are connected to the dual-Opteron

machines through NVIDIA 6800 Ultra graphics cards. The

projectors display images on a flat screen of 2.7 × 2 me-

ters. The acquisition space where the cameras are focused

is located 1 meter away from the screen.

To evaluate the potential of 3D modeling for interaction

purposes, we identified the following classical criteria as

being relevant:

• Latency: it is the delay between a user’s action and the

perception of this action on the displayed 3D model. It

is the most important criterion. A large latency can sig-

nificantly impair the interaction experience. For most

experiments on our system the overall latency, includ-

ing all stages from video acquisition to visualization,

was around 100ms. This can be noticed by the user

but is small enough to maintain a high level of interac-

tivity. The quality of the background subtraction step

as well as the simplification threshold applied to the

resulting contours have a high impact on the latency as

they determine the computational cost of the 3D mod-

eling.

• Update frequency (modeling framerate): in our experi-

ments, using 4 CPUs was enough to provide an update

frequency of 30 Hz with 6 cameras when one user was

in the interaction space.

• Quality (model’s level of detail): in our experiments,

the user was able to use its hands to carve virtual ob-

5



jects, and, depending on the angle relative to the cam-

eras, it was possible to distinguish his fingers.

• Robustness to acquisition noise: our modeling algo-

rithm is exact with respect to provided input silhou-

ettes however noisy. The resulting 3D model is always

watertight (no holes) and manifold (no self intersec-

tions). These properties are very important as many

interaction applications or visualization (shadows, ...)

rely on them. Moreover the approximation of silhou-

ette contours removes most of the background subtrac-

tion noise.

• Model Content (the type of information available, sur-

faces, and textures in our case). When texturing the

3D models with the images obtained from the cameras,

this property enables to avoid artefacs (see figure 6).

Notice that in the applications presented the model is

not textured. Real-time texturing is a challenging issue

as the amount of data to handle in a distributed con-

text is important. This is an ongoing work with very

promising preliminary results.

Figure 6. Details of a 3D model and its tex-

tured version (off-line).

8 Conclusion

We presented a marker-less 3D shape modeling approach

which optimally exploits all the information provided by

standard background subtraction techniques and produces

watertight 3D models. The shape can easily be used for vi-

sual interactions, like rendering, shading, object occlusion,

as well as mechanical interactions, like collision detection

with other virtual objects. I/O devices and computing units

are commodity components (FireWire cameras, PCs, giga-

bit Ethernet network, classroom projectors). They provide a

scalable and efficient environment. The aggregation of mul-

tiple units and an adequate work-load distribution enable us

to achieve real time performance.

Future works investigate two directions. One is to focus

on data quality, in particular background subtraction and

temporal consistency. The other is to focus on recovering

semantic information about scene objects. The goal is to

identify parts of the user’s body for motion tracking, ges-

ture recognition and more advanced interactions with the

virtual world.

References

[1] FlowVR. http://flowvr.sf.net.

[2] J. Allard and B. Raffin. A shader-based parallel ren-

dering framework. In IEEE Visualization Conference,

Minneapolis, USA, October 2005.

[3] D. Arita and R.-I. Taniguchi. Rpv-ii: A stream-based

real-time parallel vision system and its application to

real-time volume reconstruction. In Proceedings of

ICVS, Vancouver (Canada), 2001.

[4] Eugene Borovikov and Larry Davis. A Distributed

System for Real-time Volume Reconstruction. In pro-

ceedings of CAMP-2000, IEEE, 2000.

[5] J. Carranza, C. Theobalt, M. Magnor, and H.P. Sei-

del. Free-viewpoint video of human actors. In Proc. of

ACM SIGGRAPH, San Diego, pages 569–577, 2003.

[6] G. Cheung, S. Baker, and T. Kanade. Visual Hull

Alignment and Refinement Across Time: A 3D

Reconstruction Algorithm Combining Shape-From-

Silhouette with Stereo. In Proceedings of CVPR,

Madison, 2003.

[7] G. Cheung, T. Kanade, J.Y. Bouguet, and M. Holler.

A real time system for robust 3d voxel reconstruction

of human motions. In Proceedings of CVPR, Hilton

Head Island, volume 2, pages 714 – 720, June 2000.

[8] I. Debled-Rennesson, S. Tabbone, and L. Wendling.

Fast Polygonal Approximation of Digital Curves. In

Proceedings of ICPR, volume I, pages 465–468, 2004.

[9] J-S Franco, C. Ménier, E. Boyer, and B. Raffin. A

distributed approach for real time 3d modeling. In

Proceedings of the IEEE Workshop on Real Time 3D

Sensors and Their Use, Washington, USA, July 2004.

[10] J.-M. Hazenfratz, M. Lapierre, J.-D. Gascuel, and

E. Boyer. Real Time Capture, Reconstruction and In-

sertion into Virtual World of Human Actors. In Vision,

Video and Graphics Conference, 2003.

[11] T. Horprasert, D. Harwood, and L.S. Davis. A Statisti-

cal Approach for Real-time Robust Background Sub-

traction and Shadow Detection . In IEEE ICCV’99

frame-rate workshop, 1999.

6

http://flowvr.sf.net


[12] Y. Kameda, T. Taoda, and M. Minoh. High Speed 3D

Reconstruction by Spatio Temporal Division of Video

Image Processing. IEICE Transactions on Informa-

tions and Systems, pages 1422–1428, 2000.

[13] A. Laurentini. The Visual Hull Concept for Silhouette-

Based Image Understanding. IEEE Transactions on

PAMI, 16(2):150–162, February 1994.

[14] M. Li, M. Magnor, and H.-P. Seidel. Improved

hardware-accelerated visual hull rendering. In Vision,

Modeling and Visualization Workshop, Munich, 2003.

[15] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and

L. McMillan. Image Based Visual Hulls. In Proceed-

ings of ACM SIGGRAPH, pages 369–374, 2000.

[16] P.J. Narayanan, P.W. Rander, and T. Kanade. Con-

structing Virtual Wolrds Using Dense Stereo. In Pro-

ceedings of ICCV, Bombay, (India), pages 3–10, 1998.

[17] W. Stephan, L. Edouard, and G. Markus. 3D

Video Fragments: Dynamic Point Samples for Real-

time Free-Viewpoint Video. Computers & Graphics,

28(1):3–14, 2004.

[18] X. Wu and T. Matsuyama. Real-Time Active 3D

Shape Reconstruction for 3D Video. In Proceedings

of the 3rd International Symposium on Image and Sig-

nal Processing and Analysis, Rome (Italy), pages 186–

191, September 2003.

7


	Introduction
	Outline
	Acquisition
	Synchronization
	Background Subtraction
	Silhouette Polygonalization

	3D Modeling
	Computing the Viewing Edges
	Computing the Visual Hull Mesh
	Computing the Faces

	Interactions and Visualization
	Real-Time interactions
	Multi-projector Visualization

	Implementation
	The middleware library
	Data-flow Graph

	Results
	Conclusion

