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Abstract. Accurate biomechanical modelling of soft tissue is a key as-
pect for achieving realistic surgical simulations. However, because med-
ical simulation is a multi-disciplinary area, researchers do not always
have sufficient resources to develop an efficient and physically rigorous
model for organ deformation. We address this issue by implementing a
CUDA-based nonlinear finite element model into the SOFA open source
framework. The proposed model is an anisotropic visco-hyperelastic con-
stitutive formulation implemented on a graphical processor unit (GPU).
After presenting results on the model’s performance we illustrate the
benefits of its integration within the SOFA framework on a simulation
of cataract surgery.

1 Introduction

The field of medical simulation is expanding rapidly. Its multi-disciplinary as-
pect requires the integration within a single environment of solutions in areas
as diverse as visualisation, biomechanical modelling, haptic feedback and con-
tact modelling. This diversity of problems creates challenges for researchers to
advance specific areas, and leads rather often to duplication of effort. The Open
Source SOFA framework [1] was created to overcome this issue by providing re-
searchers with an advanced software architecture that facilitates the development
of new algorithms and simulators. One of the main criteria used for assessing
the level of realism within a simulator is the ability for the latter to reproduce
the deformation of anatomical structures with high fidelity. Therefore, accurate
and efficient soft tissue simulation is a critical concern in surgical simulation. For
simplicity, most analyses were initially based on linear formulations in order to
satisfy real-time constraints[2,3]. More recently, co-rotational models [4] allowing
geometric non-linearities have been introduced to overcome some of the limita-
tions of previous formulations. However, the constitutive law in all these models
remain linear. Recently, a nonlinear finite element algorithm was introduced in
[5]: the Total Lagrangian Explicit Dynamic algorithm (TLED), which was later
implemented on Graphics Processing Units (GPU) [6,7]. This implementation
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allowed real-time simulation of soft-tissue deformation with large meshes and a
gain in computational performance of more than 16 times what can be achieved
on the CPU.

In this paper we describe our CUDA-based re-implementation of the TLED
algorithm within the international and Open Source framework SOFA. We show
that this integration has a very limited cost in terms of performance by com-
paring the SOFA version with a standalone implementation. By providing an
efficient and accurate nonlinear FEM for soft tissue modelling to worldwide re-
searchers,we thus hope to assist in enhancing the realism of medical simulators.
Reciprocally this integration into the SOFA framework benefits from additional
features, which we illustrate through an example: the rapid prototyping of a
cataract surgery simulator using the TLED algorithm to simulate the deforma-
tion of the lens.

2 SOFA, an open source simulation framework

2.1 Objectives

As previously mentioned, research and development in medical simulation re-
quires many diverse skills. Although their interaction is essential to design a
realistic simulator, only few teams have the sufficient resources to build such
frameworks. SOFA is an open source framework which aims to answer these
challenges. SOFA has been mostly developed by INRIA (the French national
institute for research in computer science and control) and CIMIT (Center for
Integration of Medicine and Innovative Technology) and is primarily targeted at
real-time simulation with an emphasis on medical simulation. SOFA is highly
modular and flexible: it allows independently developed algorithms to interact
together within a common simulationwhile minimising the development time re-
quired for integration [1]. The overall goal is to develop a flexible framework
while minimising the impact of this flexibility on the computation overhead. To
achieve these objectives, SOFA proposes a new architecture that implements a
series of concepts described below.

2.2 SOFA architecture

High-level modularity. The SOFA architecture relies on the innovative no-
tion of multi-model representation where an object is explicitly decomposed into
various representations: Behaviour Model, Collision Model, Collision Response
Model, Visual Model and Haptic Model. Each representation can then be op-
timised for a particular task (biomechanics, collision detection, visualisation,
haptics) while at the same time improving interoperability by creating a clear
separation between the functional aspects of the simulation components. These
representations are then connected together via a mechanism called mapping.
Various mapping functions can be defined, and each mapping associates a set
of primitives of a representation to a set of primitives in the other representa-
tion (Figure 1). For instance, a mapping can connect degrees of freedom in a
Behaviour Model to vertices in a Visual Model.
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Fig. 1. Multi-model representation in SOFA. Left: a Behaviour Model controls the
other representations via a series of mappings. Right: examples of representations with
a liver model.

Finer level modularity. In order to easily compare algorithms within SOFA,
more flexibility was added to the Behaviour Model by introducing an even finer
level of granularity. A series of generic primitives common to most physics-based
simulations have been defined: DoF, Mass, Force Field and Solver. The DoF
component describes the degrees of freedom, and their derivatives, of the object.
The Mass component represents its mass. The Force Field describes both internal
and external forces that can be applied to this object. The Solver component
handles the time step integration, i.e. advancing the state of the system from
time t to time t+∆t.

Scene-graph. Finally, another key aspect of SOFA is the use of a scene-graph
to organise and process the elements of a simulation. Each component is attached
to a node of a tree structure. This simple structure makes it easy to visit all or
a subset of the components in a scene, and dependencies between components
are handled by retrieving sibling components attached to the same node. During
the simulation loop, most computations can be expressed as a traversal of the
scene-graph. For instance, at each time step, the simulation state is updated
by processing all Solver components, which will then forward requests to the
appropriate components by recursively sending actions within its sub-tree.

These different functionalities and levels of abstraction allow the user to
switch from one component to another by simply editing an XML file, without
having to recompile. In particular this permits testing of different computational
models of soft tissue deformation, and to assess the pros and cons of various
algorithms within the same context.

3 TLED and its GPU implementation into SOFA

3.1 TLED overview

The TLED algorithm is a geometrically and materially nonlinear dynamic finite
element method. A nonlinear kinematic framework valid for large deformation is
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used along with nonlinear constitutive formulations. Both damping and inertial
terms are included in the equations of equilibrium, and explicit time integration
is employed. A full description of the TLED algorithm can be found in previous
publications [5,6,7]. Briefly, the procedure is divided into precomputation and
time loop phases. During the simulation loop we proceed as follows:

1. apply imposed displacements and boundary conditions,
2. for each element compute

(a) displacement derivatives and deformation gradient,
(b) right Cauchy-Green deformation tensor and 2nd Piola-Kirchhoff stress,
(c) strain-displacement matrix,
(d) element nodal force contributions and add these forces to the global
nodal forces, and

3. for each node compute new displacements using the central difference method.

3.2 Anisotropic viscoelastic constitutive equation

Viscoelasticity (time dependence) and anisotropy (direction dependence) are well
known features of the response of most soft tissues but they are often neglected
for computational efficiency. However, because the element stresses are com-
puted directly from strains in explicit analyses, elaborate constitutive models
may be incorporated with relative ease. In the present work we used a trans-
versely isotropic visco-hyperelastic model with preferred material direction de-
fined by the unit vector a. To the best of our knowledge, this is the first time
that such a formulation has been implemented on GPU.

The model is defined in terms of a time-dependent strain energy function

Ψ̂ =
∫ t

0

[1− α(1− e(s−t)/τ )]∂sΨ iso + Ψvol, (1)

where α and τ are viscoelastic parameters, t is time, and ∂s denotes partial dif-
ferentiation with respect to the dummy variable s. Ψ iso and Ψvol are the isochoric
and volumetric components, respectively, of the underlying hyper-elastic strain
energy function:

Ψ iso =
µ

2
(Ī1 − 3) +

η

2
(Ī4 − 1)2, Ψvol =

κ

2
(J − 1)2, (2)

where µ, η and κ are material parameters J is the determinant of the deformation
gradient F, I1 is the first invariant of the modified right Cauchy-Green tensor
C̄ = J−2/3FTF, and Ī4 = a · C̄a is a pseudo-invariant of C̄ and a. We consider
only viscoelastic isochoric terms.

The 2nd Piola-Kirchhoff stress S is obtained through differentiation of (1)
with respect to strain. Defining Υ =

∫ t
0

1 − α(1 − e(s−t)/τ )2∂CsΨ
isods we may

obtain S = 2∂CΨ̂ = 2∂CΨ
iso + 2∂CΨ

vol − Υ . We may then update stresses at
each step n using
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Sn = 2(∂CΨ
iso)n + 2(∂CΨ

vol)n − Υn (3)

where (∂CΨ
iso)n and (∂CΨ

vol)n may be computed from the known current
deformation Cn. Finally it may be shown that Υn is computable from

Υn =
2∆tα(∂CΨ

iso)n + τΥn−1

(∆t+ τ)
. (4)

3.3 CUDA description

GPUs achieve a high floating point capacity by distributing computation across
a high number of parallel execution threads. They perform optimally as Single
Instruction, Multiple Data devices. CUDA is a relatively new C API for compat-
ible NVIDIA GPUs. CUDA organises threads in two hierarchical levels: blocks,
which are groups of threads executed on one of the GPU’s multiprocessors, and
grids, which are groups of blocks launched concurrently on the device, and which
all execute the same kernel. Figure 2 represents this thread organisation. As an
example, the NVIDIA 8800 GTX used for the results presented in section 4 has
16 multiprocessors, each containing eight processors.

Fig. 2. Each kernel is executed by CUDA as a group of threads within a grid. Image
courtesy of NVIDIA [8].
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CUDA allows developers to specify the number of threads per block in each
execution (the so-called execution configuration), effectively defining the distri-
bution of computational load across all processors. For a given kernel the block
dimensions are chosen to optimise the utilisation of the available computational
resources. Care should be taken at the multiprocessor level in balancing the
available memory required by the kernels with the ability to hide global mem-
ory latency. Since a finite amount of memory is available on a multiprocessor,
the memory requirements of a kernel will determine how many threads can run
concurrently on each. Importantly, CUDA’s use of time slicing allows more than
one block to be executed concurrently on a single multiprocessor, which has
important implications for hiding memory latency. If more than one block is
executing, the multiprocessor is able to switch processing between blocks while
others are stalled on memory accesses, whereas it has no option but to wait for
these if only one block is executing. Therefore for memory bandwidth bound
kernels it may be preferable to launch several smaller blocks on each multipro-
cessor rather than a single larger one if both configurations make the same use
of multiprocessor memory resources. While tools are available from NVIDIA for
estimating the optimal execution configuration, it has proved necessary to fine
tune the configuration experimentally for each kernel.

3.4 GPU implementation into SOFA

SOFA integration. Implementing a biomechanical model in SOFA translates
essentially into writing a new Force Field, i.e. describing the algorithm used
to compute internal forces in the model. It merely comes down to creating a
single C++ class and changing the position reads and force writes to integrate
the algorithm into SOFA’s design. The precomputation phase takes place in the
initialisation method where relevant variables are computed and passed to an
external C function that allocates memory on the GPU and binds textures to
it. During the simulation loop, the Solver requests the computation of the forces
by launching the appropriate kernels on the GPU.

Kernel organisation. The TLED GPU implementation relies on 2 kernels.
The first kernel operates over elements in the model and computes the element
stresses based on the current model configuration. It then converts these into
nodal force contributions, which are written to global memory. The second kernel
operates over nodes and reads the previously calculated element force contribu-
tions and sums them for each node. The SOFA central difference solver computes
the displacements from the nodal forces. The element force contributions could
directly be added to a global force on each node at the end of the first kernel, but
this would involve scattered writes. Although CUDA allows scattered writes, it
offers no write conflict management between threads, and potential measures to
address this severely affect the performance. Therefore, due to the impractica-
bility of scattered writes, the sum operation is reformulated as a gather and the
second kernel is needed to sum the nodal forces.



Efficient nonlinear FEM for soft tissue model. and its GPU impl. in SOFA 7

Memory usage. One efficient method for reading global memory data within
kernels is texture fetching. Textures may be bound to either cudaArrays or
regions of linear memory. CudaArrays have been designed to achieve optimal
fetching when the access pattern has a high level of 2D locality. In the present
application, the access pattern among threads is essentially random (since un-
structured meshes are used) and our experiments have shown that texture fetch-
ing from linear memory is in fact fastest. Therefore all global memory variables
were accessed using this method.

In SOFA, the forces are stored on the GPU in global memory. Since this
memory space is not cached, it is important to follow the appropriate access
pattern to obtain maximum memory bandwidth, especially given how costly ac-
cesses to device memory are. A multiprocessor takes 4 clock cycles to issue one
memory instruction for a set of threads. When accessing global memory, there
are, in addition, 400 to 600 clock cycles of memory latency. A suboptimal access
pattern would yield incoherent writes. The memory bandwidth would then be
an order of magnitude lower. In order to prevent this, a key feature of CUDA
has been used: shared memory. This is a very fast memory shared by all the
processors of a multiprocessor. The results of the second kernel are first copied
to shared memory and then moved to global memory. If the copies are well or-
ganised, it is possible to re-order the access to fulfil all the memory requirements
(for both shared and global) and thus reach the maximum bandwidth.

CPU-GPU interaction. CPU-GPU interaction is generally a significant bot-
tleneck in General Purpose GPU applications due to the relatively low interface
bandwidth and it is desirable to minimise such interaction. However, interaction
cannot be entirely removed from the present implementation since, for exam-
ple, the solver requires inputs in the form of loaded nodes (which may change
due to the interaction with the user) and their displacements, and may need
to provide outputs in the form of reaction forces for haptic feedback. CUDA
alleviates the problem somewhat by allowing allocation of areas of page-locked
host memory which are directly accessible by the GPU and therefore offer much
higher bandwidth. In SOFA, all transfers between CPU and GPU are made via
this mechanism.

Element technology. Tetrahedral meshes are easily generated and therefore
widely used in simulations. Although we used 4-node linear tetrahedra in our
previous implementation [6,7], these are known to be susceptible to volumetric
locking [9]. To overcome this limitation, we added support for reduced integra-
tion 8-node hexahedral elements which are preferable both in terms of accuracy
and computational efficiency. A drawback of using hexahedra is the existence
of so-called Hourglass modes that have to be addressed to avoid deterioration
of the solution [10]. Techniques for suppressing these modes exist, but natu-
rally involve additional computations. However, for a given number of degrees
of freedom (DOF), a hexahedral mesh can be built with far fewer elements than
a tetrahedral one. Since the majority of the calculations in explicit dynamic
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analyses are performed per element, this results in reduced overall computation
time.

From a GPU perspective, hexahedral element computations are substantially
heavier and demand more memory resources. Most of the matrices are twice as
large for hexahedra, which necessitates twice as many texture fetches per ele-
ment, and use of twice as many registers per thread. Thus the occupancy (GPU
percentage usage) drops from 25% to only 8%. Similarly, twice as many nodal
forces per element are written to global memory by the first kernel. Additional
variables for hourglass control are also required. Therefore, on a per element ba-
sis hexahedra are significantly less efficient than tetrahedra, especially for GPU
execution where memory efficiency is crucial. However, from the point of view
of an entire model the lower number of hexahedra required for a given number
of degrees of freedom still outweighs this element-wise inefficiency.

4 Results

4.1 Performance of the CUDA-based implementation

The algorithm must be efficient to be useful in a real-time environment. Thus we
assessed the computational performance of the new CUDA implementation by
comparing times to a C++ implementation as we did with our OpenGL-based
implementation [6,7]. We generated meshes with between 3 993 and 177 957 DOF
and measured the solution times for a single time step on an Intel Core 2 Duo
2.4GHz CPU, 2GB RAM and an NVIDIA GeForce 8800 GTX. Figure 3 shows
the substantial speed increase brought by the GPU implementation. We note
that the speed improvement factor grows to 53.6×, which makes the CUDA-
based implementation approximately 3 times faster than the OpenGL one on
current hardware.

4.2 Performance within SOFA

The efficiency and the side-effects of porting the algorithm into the flexible SOFA
framework need to be measured. Therefore the performance has been assessed by
comparing the computational time of the algorithm running within and outside
SOFA. NVIDIA provides a tool to check the GPU implementation by evaluating
many variables during the execution like for instance timings, counts of incon-
sistent reads and writes or GPU occupancy. We used this tool to carry out two
measures:

1. GPU time only estimates the GPU computational time.
2. CPU time allows the evaluation of the execution time with the additional

overhead due to the framework.

The tests were performed on a simple test scene featuring a cube under grav-
ity. Hexahedral meshes with different resolutions from 1 331 to 29 791 nodes were
used and the results are presented in figure 4. In our standalone implementa-
tion, the second kernel not only accumulates nodal forces but also adds gravity
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Fig. 3. Ratio of CPU to GPU solution times for the anisotropic viscoelastic formula-
tion.

Fig. 4. Left: FEM mesh of cube with 29 791 nodes deformed under a uniformed load.
Right: Comparison of GPU computational timings and CPU overheads between the
SOFA and standalone implementations for different mesh sizes.
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and updates positions based on the central difference integration scheme. These
operations are split into separated components in SOFA, in order to introduce
more flexibility (such as applying additional forces or changing the integration
algorithm). While this introduces no noticeable difference on a CPU-based sim-
ulation, when using the GPU it is more costly due to overheads in the CUDA
API for the additional kernel launches. Although it reduces the performance by
8.4% for large meshes, this could be optimised away by adding a kernel specific
to a given combination of components.

4.3 A medical application: cataract surgery

To illustrate the benefit of integrating this new soft tissue deformation model
within the SOFA framework, we created a simulation of phacoemulsification,
used for cataract surgery (figure 5). It consists in removing the natural lens
and inserting an artificial intraocular lens implant. To remove the natural lens
through a very small opening on the side of the cornea, it is emulsified using
an ultrasound device and then aspirated from the eye. During the procedure
the lens also undergoes many large deformations which need to simulated. The
phacoemulsification step itself is represented by removing elements of the vol-
umetric lens mesh. To be realistic, the simulation requires the lens to be finely
meshed, which directly impacts the computation of the deformation of the lens.
Limited by the processing resources of the CPU, the previous version of the
lens model used a rather coarse mesh to achieve interactive simulation rates.
Although studies of biomechanical properties of cornea have shown that the me-
chanical response was nonlinear [11], viscoelastic [12,13] and anisotropic [11,14],
the simulation used a linear model. Therefore the physical model underlying the
cataract surgery simulation needed to be improved.

Fig. 5. Cataract surgery simulation. Left: global view of the operating scene. Right:
illustration of the complexity of the meshes involved in the simulation.

The flexibility of SOFA allows users to easily change the biomechanical mod-
els that are used in a simulation by editing the xml file describing the scene. The
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TLED performance has been compared to a co-rotational [4] FEM implemen-
tation on the CPU (see Figure 6). The TLED GPU implementation is clearly
faster than the CPU version. However, by using an implicit solver the latter is
more robust to collision forces. On the other hand, the TLED adds nonlinearity,
viscoelasticity and anisotropy to the mechanical response modelling. This appli-
cation clearly illustrates the benefits of SOFA. By providing a framework where
algorithms can easily be exchanged, one can experiment and ascertain the most
suitable combination of algorithms for a particular application.

Fig. 6. Comparison of cataract surgery performance using co-rotational FEM on CPU
and TLED on GPU.

5 Conclusion

We have implemented an efficient fully nonlinear FEM using CUDA in the open
source framework SOFA. Adding a physical solver to SOFA able to model the
nonlinear, viscoelastic and anisotropic features of the mechanical response of
a material should enhance the fidelity of tissue deformations. We have demon-
strated the efficiency of the GPU TLED implementation, and we applied it to
cataract surgery simulation. Furthermore we have shown how one can take ad-
vantage of SOFA by experimenting with the interaction between algorithms. We
hope that our contribution to SOFA will encourage others to share implementa-
tions.
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