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Abstract—The Gauss-Seidel method is very efficient for
solving problems such as tightly-coupled constraints with
possible redundancies. However, the underlying algorithm is
inherently sequential. Previous works have exploited sparsity
in the system matrix to extract parallelism. In this paper,
we propose to study several parallelization schemes for fully-
coupled systems, unable to be parallelized by existing methods,
taking advantage of recent many-cores architectures offering
fast synchronization primitives. Experimental results on both
multi-core CPUs and recent GPUs show that our proposed
method is able to fully exploit the available units, whereas
trivial parallel algorithms often fail.

This method is illustrated by an application in medical
intervention planning, where it is used to solve a linear
complementary problem (LCP) expressing the contacts applied
to a deformable body.

Keywords-parallel algorithms, linear complementary prob-
lem, GPGPU, physically based modeling

I. INTRODUCTION

The Gauss-Seidel method is used in many applications, to
solve problems such as a set of inter-dependent constraints
or as a relaxation step in multigrid methods [1]. The heart
of the algorithm is a loop that sequentially process each
unknown quantity. Many parallelization schemes have been
studied on high performance computing platforms, exploit-
ing the sparsity of the system matrix to process in parallel
independent quantities (i.e. variable i and j can be computed
independently as long as the element (i, j) in the matrix is
zero). A tightly coupled system however, leading to a dense
matrix, cannot be thus divided. This property, combined
with the cost of synchronization primitives in traditional
distributed architectures, prevented parallelizing the Gauss-
Seidel method in this case, and alternate algorithms such as
the fully parallel but slow to converge Jacobi method were
instead used.

In recent years, computing architectures have become
increasingly parallel, with the ubiquitous use of multi-core
CPUs, and the massive parallelism available in modern GPU,
like the NVIDIA GeForce GTX 280 with 240 cores, or
the AMD Radeon HD 4850 with 800 cores. These new
architectures do not offer the same trade-off in term of com-
putation power versus communication and synchronization
overheads, as traditional high-performance platforms. This
change, combined with the need to rely on parallelism rather
than continuous improvements of a single unit’s speed to

repeat1
ε = 02
for i = 1 to n do3

ti = 04
for j = 1 to n do5

if i 6= j then6
ti += aij ∗xj

x̃i = xi7
xi = −(bi + ti)/aii8
if xi < 0 then9
xi = 0

ε = ε+ |x̃i − xi|10

until ε < εconverge11
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Figure 1. (a) Gauss-Seidel algorithm applied to a LCP. (b) Processing
a given line i requires results of all the previous lines (these dependencies
are represented here by red arrows).

increase the speed of a computation, justifies revisiting the
possible parallelization strategies of broadly used algorithms.

This paper aims at presenting several parallelization
strategies for the dense Gauss Seidel method, from simple
internal loop vectorization to more complex schemes such
as multi-level synchronizations and fine-level dependen-
cies analysis. These strategies are compared and evaluated
through performance measurements on a large range of
hardware architectures.

II. RELATED WORKS

A. The Gauss-Seidel Method

The Gauss-Seidel method [2] is an iterative technique
used to solve problems such as a linear system of equations:

Ax+ b = 0 (1)

or a linear complementary problem (LCP) [3]:

w −Ax = b (2)
wi ≥ 0, xi ≥ 0 and wixi = 0 for all i (3)

Note that (3) simply means that all values in x and w are
positive and for each i at least one of (xi, wi) must be 0.
To resolve such a system of equations with the Gauss-Seidel
method, each unknown variable xi is sequentially updated
according to the ith equation. The resulting algorithm ap-
plied to a LCP is presented in Fig. 1.

To resolve a linear system such as (1), line 9 must be
removed. Other types of problems (bilateral constraints,
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friction, ...) can be handled by changing computations in
lines 8 and 9. However, the overall structure and data
dependencies remain the same. In the remainder of this
paper, we will only consider the resolution of unilateral
constraints, however the discussed methods can be similarly
applied to other problems.

B. Parallel Constraints Solvers

A parallel Gauss-Seidel algorithm for sparse matrices
is proposed in [4] and [1]. The main idea is to gather
independent groups of constraints, which could then be
processed in parallel. Constraints which could not be put
in a group without adding dependencies are put in a last
group, internally parallelized based on a graph-coloring ap-
proach. While this method produces nice speedups with few
processors, it relies on the sparsity of the matrix to extract
parallelism, which on massively parallel architectures might
not be enough. Moreover, expensive pre-computations are
required when the sparsity pattern changes. A similar idea
can be used effectively for rigid body simulations with a very
large number of objects [5]. In this case most constraints are
independent of each other, allowing to easily extract group
of independent constraints. Parallel computations can then
be achieved within each group.

In some applications multiple LCP have to be resolved in
parallel, such as when detecting collision between convex
objects. [6] parallelize the resolution of a small LCP and
relies on solving many instances of the problem in parallel.
This removes the need for global synchronizations, and thus
allows to efficiently exploit all processors in the GPU.

If we relax the strict precedence relationships in the
Gauss-Seidel method [7], more parallelism can be extracted
even for highly coupled problems. As we add more pro-
cessing units, constraints are processed in parallelrather than
sequentially, increasingly tending toward a Jacobi algorithm.
The main drawback is then that a larger number of iterations
is required to obtain an equivalent precision.

C. GPU Architecture and Programming

Initially programming GPU for general purpose compu-
tations required the use of graphics-oriented libraries and
concepts such as pixels and textures. However, the two major
GPU vendors released new general programming models,
CUDA [8] and CTM [9]. Both provides direct access to
the underlying parallel processors in the GPU, as well as
less limited instructions, such as write operations at arbitrary
locations. Recently, a multi-vendor standard, OpenCL [10],
was released. While no implementation are available yet,
its programming model is very similar to CUDA. We will
thus base our GPU implementation on CUDA, but the
presented algorithms should be applicable to other vendors
once OpenCL support is available.

The latest generation of GPUs contains many processors
(on the order of hundreds), and exploiting them fully re-

quires creating many parallel tasks (or threads in the CUDA
terminology). On NVIDIA G80 and GT200 architecture,
the computation units are grouped into multi-processors,
each containing 8 processors. Threads are correspondingly
grouped into thread blocks, each block being executed on
a single multi-processor (which can execute multiple blocks
in parallel). A single batch of thread blocks is active at a
given time, all executing the same program (kernel).

Little control is provided over tasks scheduling within a
GPU, and synchronization primitives between thread blocks
are very limited. In CUDA, threads can only be synchronized
within each thread block, however such synchronization is
very efficient. Many blocks are required to use all avail-
able processors. Global synchronization can thus only be
achieved between kernel invocations, which currently can
only be controlled by the CPU. As a consequence, the
parallelization strategy used must require as few global
synchronization as possible, and must launch a very high
number of tasks in-between. More details on the program-
ming issues of this architecture are discussed in [11].

D. GPU-based Linear Solvers
While to our knowledge no attempt has been made yet to

parallelize a large dense Gauss Seidel algorithm on a GPU,
quite a few other algorithms have been studied, in particular
to solve sparse and dense linear systems.

Dense linear algebra routines [12] are provided by
NVIDIA, and their careful optimization are well stud-
ied [13]. It is well known that due to their regular access
patterns, dense linear algebra algorithms are well suited to
GPU’s architecture. However, due to the amount of data con-
tained in a dense matrix, in most cases the computations are
bandwidth-limited. Direct factorization-based solvers have
been ported to GPUs [14], [15]. Most of these works rely
on blocking strategies to parallelize operations.

Sparse linear algebra is somewhat more difficult to adapt
to GPUs, at least for unstructured problems. Several tech-
niques have been proposed [16], [17], [18]. The major
issues involve how the matrix is stored (compressed storage
formats), and whether blocking is used.

III. PARALLEL DENSE GAUSS-SEIDEL

In order to exploit massively parallel architectures, a large
number of parallel tasks must be extracted, which can be
challenging for Gauss-Seidel as each constraint must be
treated sequentially. In the following, we will describe how
to parallelize one iteration of the outer-loop in a Gauss-
Seidel algorithm with n constraints. The first two strategies
are trivial parallelizations of the original algorithm, while
the remaining two are more involved but are able to extract
a much higher degree of parallelism.

A. Row Parallel Algorithm
The internal loop of the algorithm computes n products

(each corresponding to a row of the system matrix), which
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Figure 2. GPU parallelization schemes: each rectangle represents a group of tasks processing a subset of the system matrix (16× 16 in this example).

can be evaluated in parallel. Their results must then be
combined. This computation is similar to a dot-product and
can be parallelized using classical approaches such as a
recursive reduction. We need to wait for the computation
of a full row in order to update the corresponding constraint
and start computing the next row. This requires n global
synchronizations for each iteration, plus additional synchro-
nizations that might be required for the reductions.

Fig. 2a presents the task groups created by this strategy.
In-between global synchronizations, only n parallel tasks
can be launched.

B. Column Parallel Algorithm

We can eliminate the recursive reduction step in the
previous strategy by creating groups of tasks corresponding
to the columns of the matrix, as shown in Fig. 2b. This
requires an additional temporary vector t of size n to store
partial accumulations on each row. Within a column, each
task can accumulate its contribution independently inside
t, eliminating the synchronizations previously required by
the reduction. However, this strategy still requires n global
synchronizations, with only n parallel tasks in-between.

C. Block-Column Parallel Algorithm

In CUDA, global synchronizations require expensive over-
heads. In order to reduce their number, a much faster
synchronization primitive is provided, but it can only be used
within thread blocks. If we create only one such a block, we
would be able to synchronize all computations without CPU
intervention, but we would only be able to exploit a small
fraction of the processors in the GPU. As the system matrix
is dense in our application, we cannot rely on finding subsets
of the constraints that are independent from each other and
thus can be treated in parallel.

We can organize our n constraints in groups of m con-
straints, producing g = dn/me groups. If we try to use
global synchronizations only between groups, we still need
to wait for the evaluation of the first constraint before com-
puting its contribution on the second constraint within each

group. However, we don’t need to compute the contributions
to the constraints on the other groups in order to update all
constraints inside the group. This allows us to propose the
algorithm presented in Fig. 3.

This strategy requires two tasks groups per group of
constraints: first to compute the block on the diagonal of
the matrix, then to process the rest of the columns. This
corresponds to the a and b blocks in Fig. 2c.

Thanks to the groups, only 2g global synchronizations are
required by this strategy. Moreover, while the first step only
creates m parallel tasks, the second step launches m(n−m)
tasks, nearly m times as many as the previous strategies.

D. Atomic Update Counter Parallel Algorithm

The previous strategies rely only on a combination
of global synchronization and fast barriers within thread
groups. While using blocks allowed to reduce the reliance on
global synchronizations, they are still used and thus limit the
scalability of the algorithm. In order to completely remove
the need for global synchronization, another primitive must
be used to insure correct ordering of computations.

We can see that in order to start computing a given block
on the diagonal of the system matrix, the computations of
all the other blocks on the same line must be completed,
which for the block to the left of the diagonal requires that
the computation of the previous diagonal block must be
finished. Thus, for any parallelization schemes respecting all
data dependencies, at any given time only one diagonal block
can be processed. By storing in a shared memory location
an integer counter storing how many diagonal blocks have
been processed, we can implicitly deduce whether a given
value xj is up-to-date in order to process a given element
aij for iteration iter of the algorithm :{

counter > dn/me(iter − 1) + bj/mc, for j > i (4)
counter > dn/meiter + bj/mc, for j < i (5)

(4) expresses dependencies of blocks in the upper triangular
part of the matrix, where values from the previous iteration
are used, whereas (5) relates to blocks in the lower triangular
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Data: ε // shared real value storing the current residual
repeat1

ε = 02
for jg = 0 to g − 1 do3

ig = jg // (a) block on the diagonal4
parfor it = 1 to m do5

i = igm+ it6
for jt = 1 to m do7

j = jgm+ jt8
if i = j then9

x̃i = xi10
xi = −(bi + ti)/aii11
if xi < 0 then xi = 012
ti = 013
ε = ε+ |x̃i − xi|14

else15
ti = ti + aij ∗ xj16

barrier17

parfor (it, jt) = (1, 1) to (n−m,m) do18
i = it // (b) non-diagonal blocks19
// skip block on the diagonal
if it ≥ jgm then i = it +m20
j = jgm+ jt21
ti = ti + aij ∗ xj22

until ε < εconverge23

Figure 3. Block-based parallelization of one iteration of the outer-loop
in the Gauss-Seidel method. Depending on the hardware architecture, each
parfor will be translated into parallel groups of threads, or executed as
small loops with a given processor. The barrier primitive applies to the
parent inner-most parfor loop. There is an implicit global synchronization
in-between out-most parfor loops.

part of the matrix, requiring values updated during the
current iteration. If the underlying hardware can provide an
atomically-updated counter while offering sufficient memory
ordering guarantees (i.e. all writes prior to an update of the
counter will be visible to other threads before the counter
update), then it can be used to remove all other synchro-
nizations. The resulting parallel Gauss-Seidel algorithm is
detailed in Fig. 4 and illustrated in Fig. 5. Note that initially
the dependencies introduce large delays. However if all
threads are then executed at the same speed, they will keep
their respective offset and should rarely have to wait again.

IV. IMPLEMENTATION AND RESULTS

Two implementations of the proposed algorithms were
developed and evaluated on multi-core CPUs as well as
NVIDIA GPUs.

A. GPU Implementation using CUDA

For each group of tasks as represented in Fig. 2, a batch
of thread blocks is executed. Each thread block contains 64
threads for the first 3 strategies, and 16 × 8 for the graph-
based approach. Each thread handles one element of the
system matrix (two for the graph approach).

For the row-based strategy, the reduction is done locally in
each thread block, and then the n/64 values are downloaded

Data: ε // shared real value storing the current residual
Data: counter = 0 // shared atomic counter storing how

// many diagonal blocks have been processed
parfor (iter, ig) = (0, 0) to (g − 1, itermax − 1) do1

parfor it = 1 to m do2
i = igm+ it3
ti = 04

for jg = ig + 1 to g − 1 do // (a) blocks after the diagonal5
wait(counter > (iter − 1) ∗ g + jg)6
parfor (i, j) = (1, 1) to (m,m) do7

(i, j) = (igm+ it, jgm+ jt)8
ti = ti + aij ∗ xj9

for jg = 0 to ig do // (b) blocks before the diagonal10
wait(counter > iter ∗ g + jg)11
parfor (it, jt) = (1, 1) to (m,m) do12

(i, j) = (igm+ it, jgm+ jt)13
ti = ti + aij ∗ xj14

if counter = itermax ∗ g then return ε15
jg = ig // (c) block on the diagonal16
if ig = 0 then ε = 017
for it = 1 to m do18

i = igm+ it19
parfor jt = 1 to m do20

j = jgm+ jt21
if i 6= j then ti = ti + aij ∗ xj22

x̃i = xi23
xi = −(bi + ti)/aii24
if xi < 0 then xi = 025
ε = ε+ |x̃i − xi|26

// notify blocks waiting on this value
if (ig = g − 1) and (ε < εconverge) then27

counter = itermax ∗ g28
else29

counter = iter ∗ g + ig30

Figure 4. Parallelization of the Gauss-Seidel method using an atomic
counter to insure that the computations ordering respects the dependencies.

back to the CPU for the final accumulation. This proved
faster than using an additional kernel invocation for the
matrix sizes we used (up to 10000 constraints).

To implement the block-based strategy, we use groups of
m = 64 columns. The first kernel, corresponding to step
(a) of algorithm 3, is executed with a single thread block,
containing 64 threads. It contains a loop over the 64 variables
of the current group, synchronized using syncthread CUDA
operations. The second kernel, corresponding to step (b), is
executed with n−64 blocks, each of 64 threads. Each block
computes the contribution of the constraints of the current
group to a specific constraint in another group. While the
first kernel is only able to exploit a single multi-processor,
the computations executed by the second kernel dominate
the run-time more and more as the size of the system
increases. This allows to exploit all multiprocessors of the
GPU, using for instance 983, 040 threads for a 1024× 1024
matrix. However, in this case we are still requiring 32 kernel
invocations per Gauss-Seidel iteration.
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Figure 5. Graph based parallel Gauss-Seidel applied to a 8×8 block
matrix. (a) Execution graph with 4 threads (dashed arrows). Vertical
solid arrows represent dependencies between computations. (b) Order of
execution on 4 processors, neglecting latencies issues. (c) Scheduling of
computations on each processor over time for the first iteration.

The final graph-based strategy, removing all global syn-
chronizations, is actually implemented as a single kernel
invocation. Each iteration of the out-most parfor loop (line
1 of algorithm 4) is executed within a 16× 8 thread group
(each thread handling two values in a 16 × 16 bloc), and
scheduled in a round-robin manner on the available multi-
processors. As the underlying programming model does not
offer any guarantees as to the order of invocation of thread
blocks, this scheduling is done manually. The achieved
performances will be highly affected by the implementation
of the wait operations, as all synchronizations are based on
it. We implemented and tested 3 variants:

1) graph : The first thread of each thread block exe-
cutes a simple spin-loop constantly reading the shared
counter, while the other threads are stopped within a
syncthread CUDA operation.

2) graph-2 : During the spin-loop, if after reading the
shared counter the dependency is not satisfied, then all
threads process one block from the next block-line to
be handled, provided its own dependency is satisfied.

3) relaxed : wait are simply ignored. This actually
changes the semantic of the algorithm [7], but guar-
antees that all processors are computing at full-speed.

The second implementation is equivalent to processing
two block-lines at the same time, but giving a priority to the
first one. This can remove some of the synchronization over-
heads. For example, let’s suppose we have t thread blocks
processing a matrix with 4t block-lines. Each thread block
will compute one every t block-line. When a thread starts a
new line, the first 3t blocks will not require any waits, as the

required dependencies where already required to compute
the previous line completed by this thread. However, the last
quarter of the blocks will possibly introduce delays, as they
are waiting for values computed quite recently. However,
once we reach this part, we know that half of the next line
that we will have to compute is already ready, as it uses
the same dependencies as this line. This means that instead
of wasting time and bandwidth spin-looping on the shared
counter, we can compute blocks from the next line. We need
to be careful however to restart computations on the first
line as soon as it is ready, otherwise we could delay the
computation of the final diagonal block, which will introduce
even more delays for the threads waiting for it.

B. Multi-threaded CPU Implementation

Until the number of cores of CPUs increase by an order of
magnitude, parallelizing an algorithm on a single computer
only requires extracting a few parallel tasks, and not tens
of thousands as for GPUs. As a result, our CPU implemen-
tation only parallelizes the out-most parallel loop of each
algorithm, corresponding approximately to all the threads
executed in a single GPU multiprocessor. Local barriers are
thus not necessary. Global synchronizations are handled by
an atomic counter on which each thread spin-loops until it
reaches the number of expected threads. The atomic counter
for the graph-based strategy is implemented similarly.

In order to support larger-scale platforms, consisting of
more than a couple of processors, non uniform memory
architectures (NUMA) must be considered. To that end, at
initialization each thread allocates and copies the part of the
matrix it will work on, to insure optimal accesses locality.

C. Performance Measurements

We measured the time required to solve LCP of different
sizes, compared to a reference CPU-based implementation.
The following architectures were used:
• A single dual-core Intel R©CoreTM2 Duo CPU E6850 at

3.00 GHz (2 cores total)
• A single quad-core Intel R©CoreTM2 Extreme CPU

X9650 at 3.00 GHz (4 cores total)
• A bi quad-core Intel R©CoreTM2 Extreme CPU X9650

at 3.00 GHz (8 cores total)
• An octo dual-core AMD R©OpteronTM Processor 875 at

2.2 GHz (16 cores total)
• A NVIDIA R©GeForceTM GTX 280 GPU at 1.3 GHz

(30 8-way multi-processors, 240 cores total)
The Intel-based architectures all use an uniform memory
layout, whereas the octo is a NUMA with 4 nodes, each
linking a pair of CPU to 8 GB of RAM.

To remove dependency on the exact matrices solved, the
number of iterations in the Gauss-Seidel algorithm is fixed
at 100. However the achieved accuracy is still computed
and transmitted back at each iteration, as it would otherwise
remove synchronization overheads associated with it.
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(a) dual-core, single-precision
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(b) dual-core, double-precision

 0

 1

 2

 3

 4

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000 10000

S
p

e
e

d
u

p

System size

CPU seq.
4-cores row
4-cores block
4-cores graph

(c) quad-core, single-precision
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(d) quad-core, double-precision
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(e) bi quad-core, single-precision
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(f) bi quad-core, double-precision

Figure 6. Computation time measurements on ubiquitous multi-core architectures, compared to optimized sequential algorithm on a single CPU core.
The row algorithm is presented in section III-A, block in section III-C, and graph in section III-D.



H. COURTECUISSE AND J. ALLARD – PARALLEL DENSE GAUSS-SEIDEL ALGORITHM ON MANY-CORE PROCESSORS 7

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000 10000

S
p

e
e

d
u

p

System size

CPU seq.
8x2-cores row
8x2-cores block
8x2-cores graph

(a) octo dual-core, single-precision
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(b) octo dual-core, double-precision
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(c) GTX 280 GPU, single-precision
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Figure 7. Computation time measurements on many-core architectures.

Figs. 6 and 7 present the speedups measured on each
architecture. On all CPU-based architectures, we observe
super-linear speedups (up to 6× on quad, 18× on biquad,
and 28 × on octo) for matrices up to about 2000 × 2000.
It can be explained by the fact that matrices of such size
do not fit anymore in the cache of a single processor, but
still do once split among the available processors. In this
range, only the graph-based strategy is able to achieve best
performances. Once the matrix size becomes bigger than
the caches, the memory bus becomes the bottleneck. In
fact, even on the 8-core bi-quad computer, parallelizing
over 8 threads is hardly faster than 2 threads. Only NUMA
systems such as octo are able to achieve better scalability,
with speed-ups stabilizing around 6× for the graph-based
strategy, which is close to peak considering the hardware is
made of 8 processors.

On GPU, the simple row and col parallelizations are not
able to really exploit the available computation units. The
block algorithm surpasses the CPU sequential implementa-
tion for matrices of more than 1400 × 1400, but it does
not improve it much, up to 2.5× for single-precision and
3.4× for double-precision. The first graph implementation
achieves similar performances for small matrices. It be-
comes faster for large problem size, reaching a speedup of
10× for single-precision computation on a matrix of size
10000×10000, and 9.5× for double-precision. The graph-2
algorithm, overlapping waits with computations for the next
line, is able to improve performances by up to 10 percents
for single-precision matrices of size 8500×8500, but it then
becomes less efficient for larger matrices.

Compared to the relaxed algorithm, we can see that the
overhead related to dependencies checks is still significant.
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Figure 8. Giga floating-point operations per seconds (GFLOP/s) achieved on each architecture.

The computation speed achieved by the fastest algorithms
on the many-cores and GPU architectures is presented in
Fig. 8. The GPU is able to surpass the sequential CPU
performances except for very small matrices. However paral-
lel CPU implementations are the fastest for single-precision
matrices up to 2800×2800 and double-precision matrices up
to 2300×2300. For larger matrices, the GPU becomes faster,
exploiting more and more of its 240 computation units and
benefiting from its massive internal bandwidth.

V. APPLICATION

For medical training and intervention planning, we de-
veloped using the SOFA framework [19] an endovascular
simulator, modeling catheters and coils manipulated inside
arteries to treat conditions such as aneurysms (Fig. 9). As
these deformable objects slide along the vessel borders, a
high number of contacts must be accurately modeled and
resolved. This proved a challenge both in terms of accuracy
and performance.

Frictionless contacts can be modeled based on Signorini’s
law, indicating that there is complementarity between the
interpenetration distance nδ and the contact force nf:

0 ≤ nδ ⊥ nf ≥ 0 (6)

To compute the forces that need to be applied to reach a
contact-free configuration, we solve the following LCP:{

δ = HCHT f + δfree

0 < δ ⊥ f > 0
(7)

Where C is the mechanical compliance matrix, and H
the transformation matrix relating contacts to mechanical
degrees of freedom.

We use an extended formulation of this LCP [20] in order
to include friction computation, creating three constraints

per contact (the normal penetration (6) and the frictions in
two tangent directions). This LCP is then solved using the
Gauss-Seidel algorithm.

This application requires solving at each frame a LCP
containing between 600 and 3000 constraints (depending on
the number of contacts and whether friction is used). In this
range, the CPU parallelization is currently the most efficient,
achieving a speedup between 5× and 20× for this step,
leading to an significant decrease in computation times. This
GPU is able to achieve accelerations up to 3×, but most
importantly it should allow us to increase the complexity of
our simulations in the future, while limiting the time taken
by the constraints solving step.

VI. CONCLUSION

We presented a new parallel Gauss-Seidel algorithm,
allowing to efficiently exploit all the processors available
in the latest generation of CPUs and GPUs. Contrary to
previous works, this approach does not require a spare
system matrix in order to extract enough parallelism. While a
dense Gauss-Seidel algorithm introduces many constraining
dependencies between computation, we showed through our
experimental studies that by carefully handling them and
overlapping computations we are able to fully exploit up to
240 processing units for large problems, achieving speedups
on the order of 10× compared to a CPU-based sequential
optimized implementation.

This algorithm was used in an interventional radiology
medical simulator. It allowed to significantly reduce the time
used for the constraint solving step. However, the other steps
of the simulation are now prevalent in the achieved speed,
particularly collision detection and the construction of the
mechanical compliance matrix. Thus the overall speedup is
currently only up to 2×. Parallelizing the remaining steps
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Figure 9. Coil embolization simulation. Sequence of 3 steps while
deploying a coil inside an aneurysm, and augmented reality control view.

should allow us to benefit more in the future, to be able to
increase the achieved realism and advance toward patient-
specific pre-operative planning simulations.

As a future work, it would be interesting to investigate
hybrid algorithms for block-sparse matrices, such as when
multiple deformable bodies are in contact. For such cases,
we could imagine a strategy where dense blocks containing
constraints attached to the same objects are handled by our
dense parallel algorithm, with an extra layer of higher-level
parallelism (multi-GPUs or in a cluster) handling multiple
blocks involving constraints linked to disjoint objects.
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